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Abstract—This paper aims to explore the problem of verifying
detectability for unambiguous weighted automata (UWAs) through
the utilization of modified self-composition. Specifically, we focus
on two types of detectability: strong periodic detectability (SPD)
and strong D-detectability (SDD). The problem involves periodically
determining the current state or distinguishing certain state-pairs of
the system, based on the occurrence of a finite number of observable
events. We introduce a new polynomial-time algorithm different
from the detector, called self-composition for UWAs, and prove that
it can be used to verify the SPD and SDD for UWAs. Ultimately, we
propose necessary and sufficient conditions based on modified self-
composition techniques to verify the aforementioned detectabilities
for the studied UWA.

Index Terms—Discrete event system, unambiguous weighted au-
tomaton, self-composition, detectability, polynomial time.

I. INTRODUCTION

Detectability is an important property of discrete event systems
(DESs) that requires estimating the states of a system based
on observations. This property also plays an important part in
several related problems, including state estimation, verification
of opacity or diagnosability, and control synthesis [1], [2].

The verification problem of detectability for finite state au-
tomata (FSAs) has been extensively investigated in the literature
[3]–[6]. Note that an FSA has no more real-world information
than the occurrences of events, however, the weights of events
may represent the time needed or something else, to better model
the actual physical systems. In this context, the verification of
various detectabilities is also studied in FSAs with weighted
sequences, namely, weighted automata (WAs) [5], [7]–[9]. In
addition, the work in [10] considers a more complicated model,
called timed automata (TAs), which adds some constraints on
weights when systems generate events. It is shown in [10] that
strong detectability (SD) for TA is decidable in exponential time
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and weak detectability is undecidable. However, for UWA in
this paper, some detectabilities can be checked efficiently within
polynomial time.

The notion of detectability is first defined in [11] for deter-
ministic finite-state automata (DFAs), and an observer is used
to check detectability. Eight types of different detectabilities are
originally studied in [3] for nondeterministic finite-state automata
(NFAs). An observer-based exponential algorithm is proposed
to verify all these detectabilities. Furthermore, a detector-based
polynomial-time algorithm is introduced to check certain de-
tectabilities, including SD, SPD, and SDD. In [4], the concept of
delayed detectability is introduced, which allows us to estimate
the states of the system within some delays. Different from the
above detectabilities focusing on the current state of DESs, I-
detectability (I for “initial”) and its corresponding I-observer are
proposed to estimate the initial state of a DES [12].

A method different from the work in [4], i.e., concurrent-
composition is first proposed in [6], to check delayed detectability
for FSAs, from the negation of detectability. Following up on the
concurrent-composition method, [9] investigate the verification
problem of SD for WAs over monoids, additionally, the observer
and detector are reconsidered for verifying weak (periodic) de-
tectability and SPD. It is worth noting that there is no work focus
on D-detectability for WAs with polynomial-time algorithms, and
different from [9], we verify the SPD using self-composition
rather than observer or detector.

In a recent study [13], it is proven that the problem of verifying
weak (periodic) detectability of NFAs is PSPACE-complete. This
result implies that, unless P=PSPACE, there does not exist a
polynomial-time algorithm to solve this problem. Furthermore,
[14] proves that even for simpler models of DESs, i.e., DFAs
without non-trivial cycles, this problem remains practically in-
tractable. In addition, the problem of verifying weak (periodic) D-
detectability and strong periodic D-detectability are also proven
to be PSPACE-complete [15], [16]. In conclusion, there are only
three types of those detectabilities, namely SD, SPD, and SDD,
which can potentially be verified in polynomial time.

This paper proposes a method to verify the detectability for
UWAs. Later, it will be demonstrated that the detectabilities of
a UWA can differ from those of the underlying FSA as the
weights of events have an impact on it. In this paper, the studied
automata are assumed to be reachable, which means that all states
can be reached starting from an initial state. Additionally, we
assume that the WAs are unambiguous, i.e., there is no more than
one path leading to the same state from an initial state labeled
with the same string, which makes the verification problem of
detectability solvable.

This paper makes the following main contributions.



1) The notion of strong D-detectability is defined for WAs.
2) For a given UWA G, its modified ϵ-extended self-

composition and modified self-composition are con-
structed, and two corresponding necessary and sufficient
conditions are derived to check the SPD and SDD, respec-
tively, with a polynomial-time complexity.

The structure of the present paper is outlined as follows.
Section II offers an overview of some preliminaries pertaining to
UWAs. In Section III, we present formal definitions of SPD and
SDD for WAs. Section IV introduces necessary and sufficient
conditions in the form of theorems, which are based on the
construction of self-composition, to enable verification of the two
detectabilities of a UWA. Finally, Section V summarizes the key
findings of the study and outlines possible avenues for future
research.

II. PRELIMINARIES

This section provides a brief overview of some preliminaries
related to WAs [17].

Definition 1: A semiring is a mathematical structure defined
by a tuple S = ⟨D,⊕,⊗, ε, e⟩, where D is a non-empty set, ⊕
and ⊗ are two associative binary operations defined on D, and
ε and e are two elements belonging to D. The semiring satisfies
the following properties:

• ⟨D,⊕, ε⟩ is a commutative monoid with a neutral element
ε, that is, a ⊕ b = b ⊕ a and ε ⊕ a = a ⊕ ε = a hold for
every a, b ∈ D;

• ⟨D,⊗, e⟩ is a monoid with a neutral element e, that is, e⊗
a = a⊗ e = a holds for every a ∈ D;

• the distributivity laws (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) and
c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b) hold for every a, b, c ∈ D;

• ε⊗ a = a⊗ ε = ε for every a ∈ D.
Example 1: One of the most commonly used examples of

a semiring is the set of natural numbers under the standard
addition and multiplication, denoted as S = ⟨N,+,×, 0, 1⟩.
Another notable semiring is the max-plus semiring, denoted as
Qmax = ⟨Q ∪ {−∞},max,+,−∞, 0⟩, where Q is the set of
rational numbers.

Let E be a non-empty, finite set of labels that serves as
the alphabet of a DES. The set E∗ denotes the set of all the
finite-length strings formed by concatenating the labels from E,
including the empty word ϵ, which is the identity element of
concatenation. The set Eω denotes the set of all infinite-length
strings formed by concatenating the labels from E.

Definition 2: A WA G over a max-plus semiring Qmax =
⟨Q ∪ {−∞},max,+,−∞, 0⟩ is defined as a tuple:

G = (Q,E, t,Q0, ϱ),

where
• Q is a non-empty finite state set and E is a non-empty finite

event set;
• The transition function t : Q× E ×Q → Qmax associates

each state transition with a value from the set Qmax. If
t(p, e, q) ̸= ε, it signifies the presence of a transition from
state p to state q labeled with e, and the weight of this
transition is given by t(p, e, q). Particularly, if t(p, e, q) = ε,
it indicates that there is no transition from state p to state q
labeled with e;

• The function ϱ : Q → Qmax maps the states to their
corresponding initial delays. If ϱ(q) ̸= ε, it signifies that
the state q is an initial state, and ϱ(q) represents its initial
weight. Conversely, if ϱ(q) = ε, it indicates that the state q
is not an initial state;

• Q0 is the initial state set: Q0 = {q ∈ Q | ϱ(q) ̸= ε}.
Definition 3: Given a WA G, we define its path of

length k ∈ N as a sequence of state transitions: π =
(q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk), where qi ∈ Q for i =
0, . . . , k, ei ∈ E and t(qi−1, ei, qi) ̸= ε for i = 1, . . . , k.

A path π can be considered a circuit if and only if the first state
q0 coincides with the last state qk. The set of all paths labeled
with string ω ∈ E∗ originating from state q1 leading to q2 is
denoted by q1

ω
⇝ q2. Note that we have q1

ϵ
⇝ q2 = ∅. For any

subsets Q1, Q2 ⊆ Q, we use Q1
ω
⇝ Q2 to denote the union of

the path set q1
ω
⇝ q2 for any q1 ∈ Q1 and q2 ∈ Q2. For a circuit

q
ω−→ q, we denote by q(

ω−→ q)k the concatenation of q and k
copies of ω−→ q, where k ∈ N.

Definition 4: For an arbitrary path π of length k, denoted
as π = (q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk) of a WA G
with q0 ∈ Q0, the weighted sequence σ(π) ∈ (E × Q)∗

generated by π is defined as a sequence of ordered pairs: σ(π) =
(e1, τ1)(e2, τ2) · · · (ek, τk), where τ1 = ϱ(q0)+t(q0, e1, q1), τi =
τi−1 + t(qi−1, ei, qi) for i = 2, . . . , k.

In an intuitive sense, the weighted sequence σ(π) is the
concatenation of the ordered pairs of the form (event, weight). To
represent the set of all weighted sequences σ(π) that lead from

state q0 to qk, we use the notation q0
σ(π)
⇝ qk. For transitions

q0
e1−→ q1, q1

e2−→ q2, . . . , qn−1
en−→ qn, we denote them by

q0
e1e2...en−→ qn for simplicity.
Definition 5: A WA G is considered unambiguous if |Q0

ω
⇝

{q}| ≤ 1, where q ∈ Q and ω ∈ E∗.
In simple terms, unambiguity in this context means that there

can only be one path labeled with a given string ω that leads to a
state q from the initial state. There are some efficient algorithms
to verify the degree of ambiguity for the underlying FSA in
polynomial-time [18].

A UWA G is considered to be deterministic if both the
following two conditions are true:

1) G possesses only one initial state;
2) For any state in G, each of its transitions is associated with

a distinct label.
It is evident that a deterministic automaton guarantees unam-

biguity, but the reverse is not always true. Consequently, it can
be inferred that the category of UWAs is more extensive than
that of DFAs.

Example 2: Let us examine the UWA G depicted in Fig.
1, where Q0 = {0}, Q = {0, 1, 2, 3, 4, 5}, E = Eo ∪
Euo with Eo = {a, b, c}, Euo = {u}. Transitions t(0, u, 1) =
0.1, t(0, u, 2) = 0.5, t(1, a, 3) = 0.7, t(2, a, 4) = 0.3, t(3, b, 4) =
0.1, t(4, c, 4) = 0.1, t(5, c, 5) = 0.1, t(3, u, 5) = τ , where
τ ̸= 0. It should be noted that any values not explicitly listed in
the transition function t(p, e, q) indicate the lack of a transition.
Initial delays are ϱ(0) = 0 and ϱ(i) = ε for i = 1, . . . , 5.

Note that this automaton G is unambiguous, but nondeter-
ministic. Now, if we replace transition t(0, u, 1) = 0.1 with
t(0, b, 1) = 0.1, then the modified automaton is deterministic,
and then unambiguous.
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Fig. 1: A UWA G.

Definition 6: Given a UWA G, its generated weighted language
L(G) is defined as:

L(G) ={s ∈ (E ×Q)∗ | ∃p ∈ Qi,∃q ∈ Q,

∃ω ∈ E∗, σ(p
ω−→ q) = s}.

We slightly abuse the notations and denote by ϵt the empty
weighted sequence. For two weighted sequences σ1 and σ2, we
denote by σ1 · σ2 (or simply σ1σ2) the concatenation of σ1 and
σ2. Specially, for any σ ∈ (E×Q)∗, it holds that σϵt = ϵtσ = σ.

Definition 7: Given an event set E = Eo ∪ Euo, the natural
projection P : E∗ → E∗

o can be extended to the case of weighted
sequences as P : (E × Q)∗ → (Eo × Q)∗. This extension is
defined as follows:

P (ϵt) = ϵt, P ((e, τ)) =

{
(e, τ), if e ∈ Eo

ϵt, if e ∈ Euo

P (σ · (e, τ)) = P (σ)P ((e, τ))

for σ ∈ (E ×Q)∗, (e, τ) ∈ (E ×Q).

As a result, it follows that for any weighted sequence σ =
(e1, τ1)(e2, τ2) · · · (ek, τk) ∈ (E × Q)∗, P (σ) is defined as the
weighted sequence that results from eliminating all ordered pairs
in σ that include an event in Euo.

In the rest of this paper, we use P (L(G)) to denote the set
of observations of UWA G, i.e., the projection of the weighted
language.

III. PROBLEM STATEMENT

We partition the alphabet E into two distinct and separate parts
as E = Eo ∪ Euo, where Eo and Euo are the observable and
the unobservable parts. All unobservable labels are assumed to
be represented by symbol u, namely E = Eo ∪ {u}. We can
assume, without loss of generality, that the weights of all initial
states in the UWA are equal to zero.

The following assumptions are made in this work to analyze
the weighted automaton G. 1) The WA G is unambiguous
(see Def. 5); 2) There is no circuit that is only labeled with
unobservable events in the system. However, even in a UWA,
there can be cases where multiple paths can generate the same
observed weighted sequence.

A. Consistent State

In logical DESs, the set of all infinite-length event sequences
that the system may generate is referred to as the ω-language. It
can be naturally extended to the WAs, for a WA G, the set of

all infinite-length sequences of (event, weight) pairs that G may
generate is denoted by Lω(G).

Definition 8: For an observed weighted sequence σo ∈
P (L(G)), the set of all σo-consistent states is defined as:

C(σo) = {q ∈ Q | ∃σ ∈L(G),∃q0 ∈ Q0 :

q0
σ
⇝ q, P (σ) = σo}.

In simple terms, a state q is said to be consistent with
observation σo if there exists a weighted sequence σ that leads
to state q and has the property that its projection coincides with
σo.

Example 3: Consider the UWA G depicted in Fig. 1. Given
σo = (a, 0.8), it follows that the set of σo-consistent states
is given by C(σo) = {3, 4, 5}. It is worth noting that there
exist two distinct paths originating from an initial state that
generate weighted sequences consistent with σo, i.e., π1 =
(0, u, 1)(1, a, 3) and π2 = (0, u, 2)(2, a, 4). Considering π2, we
have σ2 = σ(π2) = (u, 0.5)(a, 0.8) and 0

σ2−→ 4. Consequently,
state 4 is σo-consistent. Similarly, if we consider π1, state 3 is
also σo-consistent. Since the transition (3, u, 5) is unobservable,
the state 5 is also a consistent state.

B. Detectability of Unambiguous Weighted Automata

In this subsection, we expand the scope of the detectability
problem from its original definition for NFAs in [3], to encom-
pass the framework of UWAs, as described in [7]. For every
weighted sequence σ, we use σ̄ to denote the set of all prefixes
of σ.

Definition 9 (Strong Periodic Detectability): A UWA G is
strongly periodically detectable w.r.t. a projection P if it is pos-
sible to periodically ascertain the current state of the automaton
for all weighted sequences of infinite length, that is,

(∃k ∈ N)(∀σ ∈ Lω(G))(∀σ′ ∈ σ̄)

(∃σ′′ ∈ (E ×Q)∗)σ′σ′′ ∈ σ̄

∧ |P (σ′′)| < k ∧ |C(P (σ′σ′′))| = 1.

The SPD requires that through a finite number of observations,
the set of observation-consistent states will periodically become a
singleton set. However, in some cases, it may be too strict, and a
more relaxed detectability is considered, namely, D-detectability
(D for “distinguish”).

D-detectability is another property that imposes the require-
ment that a finite number of observations is sufficient to distin-
guish any state-pair belonging to a given specification Qspec ⊆
Q×Q. It is useful for instance in supervisory control with partial
observations, where the possibility of achieving a prescribed
closed-loop behavior depends on the capability to differentiate
some state-pairs based on system observation.

Definition 10 (Strong D-Detectability): A UWA G is strongly
D-detectable w.r.t. a projection P and a specification Qspec if it
is possible to consistently differentiate between state-pairs within
Qspec, through a finite number of observations, for all weighted
sequences of infinite length, that is,

(∃k ∈ N)(∀σ ∈ Lω(G))(∀σ′ ∈ σ̄)|P (σ′)| > k

⇒ C(P (σ′))× C(P (σ′)) ∩Qspec = ∅.

When Qspec = {(q1, q2) ∈ Q × Q | q1 ̸= q2}, strong D-
detectability is equivalent to strong detectability.



IV. DETECTABILITY VERIFICATION FOR UNAMBIGUOUS
WEIGHTED AUTOMATA

In this section, we draw inspiration from the previous work of
[6], [9], a modified self-composition of a UWA G is constructed
to establish necessary and sufficient conditions for checking the
detectabilities mentioned above in a UWA.

A. Construction of Self-Composition

In this subsection, we recall a notion of concurrent composition
for a UWA G and itself, namely self-composition of G in [9].
For any Qc1, Qc2 ⊆ Qc, we denote (Qc1, e,Qc2) the set of
(qc1, e, qc2) for any qc1 ∈ Qc1 and qc2 ∈ Qc2.

Definition 11: Given a UWA G, its self-composition is defined
as an FSA

CC(G) = (Qc, Ec, Q0,c,∆c),

where
• Qc = Q×Q; Ec = Eo; Q0,c = Q0 ×Q0;
• ∆c ⊆ Qc ×Eo ×Qc is the set of state transitions. We have

({(q1, q2)}, e, C(σo) × C(σo)) ⊆ ∆c if and only if there
exist two paths in G as follows:

π1 = q1
ω1−→ q′1

e−→ q3,

π2 = q2
ω2−→ q′2

e−→ q4,

where state-pairs (q1, q2), (q
′
1, q

′
2), (q3, q4) ∈ Qc, and two

weighted sequences σ1, σ2 ∈ (E × Q)∗ are generated by
π1, π2 as follows:

σ1 = (ω1, τ1)(e, τ),

σ2 = (ω2, τ2)(e, τ),

where σ1 and σ2 have the same observation σo, i.e.,
P (σ1) = P (σ2) = (e, τ) = σo, ω1, ω2 ∈ E∗

uo are unob-
servable event sequences, e ∈ Eo is the unique observable
event in the weighted sequences σ1 and σ2. Note that we
have q3, q4 ∈ C(σo).

Intuitively, we construct a transition ((q1, q2), e, (q3, q4)) in
CC(G) if and only if there exist two paths that are labeled
with the unique observable event e, which start from q1 and q2,
through some identical weights, then lead to q3 and q4 in C(σo),
respectively. Since we are incapable of observing the exact
weight at whim, between the current unique observable event
e occurs and the next observable event arrives, it is necessary to
consider all the σo-consistent states after the occurrence of e no
matter how the weight is.

For any state qc ∈ Qc, we denote qc = (qc(L), qc(R)). In
addition, a state qc is called a singleton state if qc(L) = qc(R),
and called a non-singleton state otherwise.

Definition 12: Given a UWA G, a modified self-composition
CC ′(G) obtained from CC(G) = (Qc, Eo, Q0,c,∆c) is defined
by deleting each state-pair (qc(L), qc(R)) and the transitions
attached to it if t(p, u, qc(L)) ̸= 0 or t(p, u, qc(R)) ̸= 0 as
follows:

CC ′(G) = (Q′
c, Eo, Q0,c,∆

′
c),

where
• Q′

c = Qc \ {qc ∈ Qc | ∃p, qc(L), qc(R) ∈ Q,∃u ∈ Euo :
t(p, u, qc(L)) ̸= 0 ∨ t(p, u, qc(R)) ̸= 0};

• ∆′
c = ∆c \ {(pc, e, qc) ∈ ∆c | ∃pc, qc ∈ Qc,∃u ∈ Euo :

t(pc(L), u, qc(L)) ̸= 0 ∨ t(pc(R), u, qc(R)) ̸= 0}.
Definition 13: Given a UWA G, a variant from CC(G) =

(Qc, Eo, Q0,c,∆c), called ϵ-extended self-composition is defined
as:

CCϵ(G) = (Qc, Eo ∪ {ϵ}, Q0,c,∆
ϵ
c),

where
• ∆ϵ

c = ∆c ∪ {((q1, q2), ϵ, (q1, q1)) | ∃q1, q2 ∈ Q,∃qc ∈
Qc,∃e, e′ ∈ Eo : ((q1, q1), e, qc) ∈ ∆c ∧ ((q1, q2), e

′, qc) /∈
∆c, q1 ̸= q2} ∪ {((q1, q2), ϵ, (q2, q2)) | ∃q1, q2 ∈ Q,∃qc ∈
Qc,∃e, e′ ∈ Eo : ((q2, q2), e, qc) ∈ ∆c ∧ ((q1, q2), e

′, qc) /∈
∆c, q1 ̸= q2}.

Intuitively, for a singleton state (q1, q1), the non-singleton state
(q1, q2) has a common component q1 with it. Note that the term
“an arbitrary state qc” can refer to either a singleton state or a
non-singleton state. If there exists an observable transition from
the singleton state (q1, q1) to the arbitrary state qc, but there exists
no observable transition from the non-singleton state (q1, q2) to
qc, i.e., ((q1, q1), e, qc) ∈ ∆c∧((q1, q2), e′, qc) /∈ ∆c, then we add
an ϵ-extended transition from the non-singleton to the singleton
state, i.e., ((q1, q2), ϵ, (q2, q2)), then we get a path from the non-
singleton leading to the arbitrary state.

Without loss of generality, we obtain a modified ϵ-extended
self-composition CC ′-ϵ(G) = (Q′

c, Eo ∪ {ϵ}, Q0,c,∆
′-ϵ
c ) by

deleting the state-pairs as in Def. 12 and then adding the ϵ-
extended transitions as in Def. 13.

Remark 1: According to Def. 11, CC(G) assembles every pair
of transitions of G that are labeled with a unique observable event
with identical weights. The number of states and transitions of
CC(G) are at most |Q|2 and |Q|2(|Q|2 × |E|), respectively. For
any two states in the “unambiguous” WA G, there are at most
|Q| sequences e, ue, uue, · · · , uke from one to another, due to the
absence of unobservable circuits, where k = |Q|−1 and e ∈ Eo.
Hence, for each state in G, there are at most |Q|(|Q| − 1)|Eo|
observable transitions with different weights. As a result, the
complexity of constructing self-composition is O(|Q|2(|Q|2 ×
|Q|(|Q| − 1)|Eo|)) = O(|Q|6|Eo|).

B. Criterion for Checking Detectability

This subsection derives necessary and sufficient conditions
from modified self-composition to check the SPD and SDD of a
UWA G.

Theorem 1: A UWA G is deemed not strongly periodi-
cally detectable iff in its modified ϵ-extended self-composition
CC ′-ϵ(G), at least one of the following two conditions is true.

1) There exists a reachable non-singleton state q ∈ Q′
c such

that q(L) ̸= q(R), and there exists a path q(L)
ω1−→ q′

ω2−→
q′ in G, where ω1 ∈ E∗

uo, ω2 ∈ E∗
uo \ {ϵ}, q′ ∈ Q.

2) There exists a reachable circuit of non-singleton states, i.e.,
q1

ω1−→ · · · ωn−→ qn+1 for n ∈ N+ such that q1(L) =
qn+1(L), q1(R) = qn+1(R), qi(L) ̸= qi(R), qi ∈ Q′

c, and
ωi ∈ Eo for i = 1, . . . , n.

Proof: According to Def. 9, G is not strongly periodically
detectable iff for any k ∈ N, there are σ ∈ Lω(G) and σ′ ∈ σ̄
such that, for any σ′′ ∈ (E × Q)∗ where |P (σ′′)| < k and
σ′σ′′ ∈ σ̄, the condition |C(P (σ′σ′′))| > 1 holds true.



“if”: Suppose that there is a reachable state q in CC ′-ϵ(G)
with q(L) ̸= q(R), and there is a path q(L)

ω1−→ q′
ω2−→ q′

in G. Choose σ = σ(q0
ω′

−→ q(L)
ω1−→ q′(

ω2−→ q′)ω), where
q0 ∈ Q0, q′ ∈ Q, and σ′ = σ(ω′). Let σ′′ = σ(ω1(ω2)

k−1),
where ω1 ∈ E∗

uo, ω2 ∈ E∗
uo \ {ϵ}. For any σ′′, we can always

find a k that |P (σ′′)| < k, then we have σ′σ′′ ∈ σ̄, σ ∈ Lω(G),
and |C(P (σ′σ′′))| = |C(P (σ′))| = |{q(L), q(R)}| > 1. Thus,
G violates the definition of SPD.

Assume for n ∈ N+, there exists a reachable circuit q1
ω1−→

· · · ωn−→ qn+1, where q1 = qn+1, qi(L) ̸= qi(R) and qi ∈ Q′
c for

i = 1, . . . , n. Choose σ = σ(q0
ω′

−→ q1(
ω1−→ · · · ωn−→ qn+1)

ω)
such that q0 ∈ Q0, σ′ = σ(ω′). Let σ′′ = σ(ω1 · · ·ωn),
then we have |P (σ′′)| < k, σ′σ′′ ∈ σ̄, σ ∈ Lω(G), and
|C(P (σ′σ′′))| > 1. Therefore, we know that G is not strongly
periodically detectable.

“only if”: If G violates the definition of SPD, according to
Def. 9, we choose k > |Q|2, and prove the two above conditions
hold, respectively.

If there is no reachable circuit consisting of non-singleton
states, then since |C(P (σ′σ′′))| > 1, there exists a non-singleton
state q with q(L) ̸= q(R). Choose σ′′ = σ(ω1ω2), accord-
ing to Pigeonhole Principle, there necessarily exists a path as
q0

ω′

−→ q1
ω1−→ q′

ω2−→ q′ where ω1 ∈ E∗
uo, ω2 ∈ E∗

uo \ {ϵ}.
If there is no unobservable circuit from a component of

the non-singleton state, since |C(P (σ′σ′′))| > 1, there ex-
ists more than one non-singleton state q1, q2, · · · . Then choose
σ′′ = σ(ω1 · · ·ωn), according to Pigeonhole Principle, there
necessarily exists a reachable circuit q1

ω1−→ · · · ωn−→ qn+1

such that q1(L) = qn+1(L), q1(R) = qn+1(R), qi(L) ̸= qi(R),
qi ∈ Q′

c and ωi ∈ Eo for i = 1, . . . , n.
Theorem 2: A UWA G is deemed not strongly D-detectable

iff in its modified self-composition CC ′(G) the following two
conditions both hold.

1) There is a non-singleton state having a non-empty inter-
section with Qspec, and is reachable from a state-pair in a
circuit, i.e., there exists a path

q0
ω1−→ q1

ω2−→ q1
ω3−→ q2, (1)

where

q0 ∈ Q0,c; q1, q2 ∈ Q′
c;

ω1, ω2, ω3 ∈ E∗
o ; q2(L) ̸= q2(R);

{(q2(L), q2(R)), (q2(R), q2(L))} ∩Qspec ̸= ∅;
(2)

2) In addition, in G, there exists a circuit reachable from
q2(L), i.e., there exists a path

· · · −→ q2(L)
ω4−→ q3

ω5−→ q3, (3)

where ω4, ω5 ∈ E∗
o and q3 ∈ Q.

Proof: According to Def. 10, G is not strongly D-detectable
iff for any k ∈ N, there exists σ ∈ Lω(G) and σ′ ∈ σ̄ such that
|P (σ′)| > k and C(P (σ′))× C(P (σ′)) ∩Qspec ̸= ∅.

“if”: Given an arbitrary parameter k ∈ N, according to
(1) and (2), there is a path σ′ = σ(q0(L)

ω1−→ q1(L)(
ω2−→

q1(L))
k ω3−→ q2(L)) in G such that C(P (σ′)) × C(P (σ′)) ∩

Qspec = (q2(L), q2(R)) or (q2(R), q2(L)); According to (3),
choose

σ = σ(q0(L)
ω1−→ q1(L)(

ω2−→ q1(L))
k

ω3−→ q2(L)
ω4−→ q3(

ω5−→ q3)
ω),

then we have σ ∈ Lω(G) and σ′ ∈ σ̄ satisfies |P (σ′)| ⩾ k+2 >
k, and C(P (σ′))×C(P (σ′))∩Qspec ̸= ∅. Therefore, G violates
the definition of SDD.

“only if”: Suppose that G violates the definition of SDD. Let
k > |Q|2, σ ∈ Lω(G) and σ′ ∈ σ̄ such that |P (σ′)| > k and
C(P (σ′))×C(P (σ′))∩Qspec ̸= ∅. Thus, there necessarily exist
two distinct paths π1 and π2 in G that originate from the initial
state and lead to distinct states such that σ(π1) = σ(π2) ∈ σ̄.
According to Def. 11, from π1 and π2 we can construct a path
of CC ′(G) as in (1), according to Pigeonhole Principle, since
CC ′(G) has at most |Q|2 states, there necessarily exists a circuit
reachable from q2(L).

Example 4: Let us revisit the UWA G illustrated in Fig. 1, and
construct its modified ϵ-extended self-composition CC ′-ϵ(G) in
Fig. 2. The modified self-composition CC ′(G) is obtained from
the self-composition CC(G) by deleting five transitions, e.g.,
(0, 0)

a−→ (3, 5), (0, 0) a−→ (5, 3), (0, 0) a−→ (4, 5), (0, 0) a−→
(5, 4), (0, 0) a−→ (5, 5), since t(3, u, 5) = τ ̸= 0. Then CC ′-ϵ(G)
is obtained from CC ′(G) by adding four ϵ-extended transitions,
(3, 4)

ϵ−→ (3, 3), (4, 3)
ϵ−→ (3, 3), (3, 4)

ϵ−→ (4, 4), and
(4, 3)

ϵ−→ (4, 4).
By Theorem 1, there exists no path in CC ′-ϵ(G) that satisfies

one of the two conditions, that is G is strongly periodically
detectable.

Choose Qspec = {(3, 4)}, then by Theorem 2, similar to
the above, there exists no path in CC ′(G) satisfying the two
conditions, thus G is strongly D-detectable.

Construct the observer or detector of the underlying FSA of
G as in [3], we find that the underlying FSA of G lacks both
SPD and SDD, i.e., the detectability of a UWA is changed due
to the influence of the weights of transitions.

(0, 0)

(4, 4)

(3, 4)

(3, 3)

(4, 3)

a

a

a

a

c

c

Fig. 2: Modified ϵ-extended self-composition CC′-ϵ(G) of G in Fig. 1 where
τ ̸= 0.

Example 5: Replace the transition t(3, u, 5) = τ with
t(3, u, 5) = 0 in the UWA G shown in Fig. 1, and construct
its modified self-composition CC ′(G) shown in Fig. 3 (the
CC ′-ϵ(G) is obtained from CC ′(G) by adding 12 ϵ-extended
transitions, such that (3, 4)

ϵ−→ (3, 3), (4, 3)
ϵ−→ (3, 3),

(3, 5)
ϵ−→ (3, 3), (5, 3) ϵ−→ (3, 3), (4, 3) ϵ−→ (4, 4), (3, 4) ϵ−→

(4, 4), (4, 5)
ϵ−→ (4, 4), (5, 4)

ϵ−→ (4, 4), (5, 3)
ϵ−→ (5, 5),



(3, 5)
ϵ−→ (5, 5), (5, 4) ϵ−→ (5, 5), and (4, 5)

ϵ−→ (5, 5)). Since
t(3, u, 5) = 0, the structure of CC ′(G) and CC ′-ϵ(G) are the
same as that of CC(G) and CCϵ(G), respectively.

By Theorem 1, there exists a reachable circuit (3, 5) c−→ (3, 5)
(or (5, 3) c−→ (5, 3)) in CC ′-ϵ(G) that satisfies the condition 2),
thus G is not strongly periodically detectable.

Choose Qspec = {(4, 5)}, then by Theorem 2, there exists a
path (0, 0)

a−→ (4, 5)
c−→ (4, 5)

c−→ (4, 5) in CC ′(G), and in
G, there exists a circuit 4 b−→ 4 reachable from state 4. We know
that G is not strongly D-detectable.

(0, 0)

(3, 3)

(4, 4)

(3, 4)

(5, 5)

(4, 5)

(5, 4)

(4, 3)

(3, 5)

(5, 3)

a

a

a

c

b

c

c

c

a

a

a

a

a

a

c

c

c

c

c

Fig. 3: Modified self-composition CC′(G) of G in Fig. 1 where τ = 0.

The role of ϵ-extended transitions might be unclear in the
above examples, however, it is necessary in some cases (see
Example 6).

Example 6: Consider another UWA G1 and construct its
modified ϵ-extended self-composition CC ′-ϵ(G1) in Fig. 4 (the
CC ′(G1) is obtained from CC ′-ϵ(G1) by deleting the four ϵ-
extended transitions, i.e., (3, 4)

ϵ−→ (3, 3), (4, 3)
ϵ−→ (3, 3),

(3, 4)
ϵ−→ (4, 4), and (4, 3)

ϵ−→ (4, 4)), then the effect of ϵ-
extended transitions will be shown.

By Theorem 1, there exists a reachable circuit (3, 4)
ϵ−→

(3, 3)
b−→ (3, 4) such that ϵb = b ∈ Eo in CC ′-ϵ(G1), that

is, G1 is not strongly periodically detectable.
Choose Qspec = {(3, 4)}, then by Theorem 2, there exists a

path (0, 0)
a−→ (3, 3)

b−→ (3, 3)
b−→ (3, 4) in CC ′(G1), and

in G1, there exists a circuit 3
b−→ 3 reachable from state 3.

Therefore, G1 is not strongly D-detectable.

b

b

0

1 2

3 4

a / 0.7 a / 0.3

b / 0.3

u / 0.5u / 0.1

b / 0.3

(0, 0)

(4, 4)

(3, 4)

(3, 3)

(4, 3)

a

a

a

a

b

b

Fig. 4: A UWA G1 (left) and its modified ϵ-extended self-composition
CC′-ϵ(G1) (right).

Remark 2: A circuit is considered elementary if none of
its vertices, except for the first and last, are repeated. Two
elementary circuits are regarded as distinct if one cannot be
obtained from the other by a cyclic permutation. The above
detectabilities can be verified by searching a non-singleton state
belonging to the elementary circuit, with a complexity that is
linear in the size of CC(G), i.e., O(|Qc| × (|Q|2 + |Q|4|E|)) =
O(|Q|2× (|Q|2+ |Q|4|E|)) = O(|Q|6|E|), according to Remark
1.

V. CONCLUSION AND FUTURE WORK

This paper focuses on studying the problem of verifying the
SPD and SDD for UWAs using a new polynomial-time algo-
rithm different from the detector, i.e., self-composition. For this
purpose, we defined the notion of SDD for WAs and proposed a
necessary and sufficient condition by modified self-composition
for a UWA. In addition, we construct a structure called modified
ϵ-extended self-composition for a UWA to check SPD and derive
its corresponding necessary and sufficient condition. As part of
future research, we aim to explore the detectability and other
related properties of more general WAs.
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