
1

Enforcement of Critical Observability in Modular
Discrete-Event Systems

Shaowen Miao, Jan Komenda, Tomáš Masopust, and Aiwen Lai

Abstract— In safety-critical applications, the ability to
distinguish between critical and noncritical states based
on observations, known as critical observability (CO), is
essential for ensuring reliability and security. We address the
enforcement of CO in discrete-event systems (DES) through
supervisory control. While a supremal CO sublanguage does
not exist, we overcome this challenge by leveraging the
concept of normality, proposing an algorithm to compute the
least restrictive closed-loop system that is CO. We extend
this approach to modular DES, showing how CO can be
enforced locally to achieve global enforcement, thereby
addressing scalability challenges. Finally, we integrate our
framework with safety specifications, enabling the synthesis
of supervisors that concurrently ensure both safety and CO.

Index Terms— Discrete-event systems, modular control,
deterministic finite automata, critical observability.

I. INTRODUCTION

Ensuring reliability and safety in complex systems is essen-
tial, especially given their increasing scale and safety-critical
requirements. Discrete-event systems (DES) provide a powerful
framework for modeling such systems. To effectively manage
the inherent complexity of large-scale DES, modular control [1],
[2] has emerged as a crucial paradigm, enabling complexity
mitigation through the synthesis of local supervisors.

Within this context, critical observability (CO) is a fun-
damental property of cyber-physical systems, defining the
ability to distinguish between designated critical and noncritical
states based on observed events. In safety-critical applications,
where certain operations may be unsafe or demand heightened
attention, CO is essential for effective monitoring, diagnosis,
and control to guarantee system reliability and security.

The concept of CO was introduced by Pola et al. [3] for finite
automata and extended to Petri nets by Masopust [4]. Verifying
CO is computationally challenging, being NL-complete for
DES, PSPACE-complete for modular DES, and undecidable
for labeled Petri nets (unless the set of critical markings is

Supported by Fujian Provincial Natural Science Foundation of China
under Grant 2025J01054; by the Natural Science Foundation of Xiamen,
China under Grant 3502Z202573035; and by RVO 67985840. (Corre-
sponding author: Aiwen Lai.)

S. Miao and A. Lai are with the Department of Automation, Xia-
men University, Xiamen 361102, China. miaosw0706@stu.xmu.edu.cn,
aiwenlai@xmu.edu.cn

J. Komenda is with the Institute of Mathematics of the Czech Academy
of Sciences, 115 67 Prague, Czechia. komenda@ipm.cz

T. Masopust is with the Faculty of Science, Palacky University Olomouc,
Czechia. tomas.masopust@upol.cz

finite or co-finite) [4]. The inherent complexity underscores
the need for effective methods to enforce this property.

While Pola et al. [3] primarily focused on verifying CO in
networks of nondeterministic automata with full observation,
employing bisimilarity-based reductions to manage complex-
ity, our work takes a different direction. We focus on the
enforcement of CO. Specifically, we leverage deterministic
automata under partial observation and introduce a novel
modular approach for CO enforcement through supervisory
control, directly capitalizing on the plant’s modular structure.

The enforcement of CO for bounded labeled Petri nets
has been explored by Cong et al. [5], who utilized basis
markings and integer linear programming (ILP). However, their
monolithic ILP-based approach inherently faces significant
computational challenges for large systems. In contrast, our
work proposes a modular approach that enforces CO locally.
This design paradigm ensures that the complexity remains
exponential only in the size of individual local subsystems,
rendering it highly advantageous for large-scale systems
composed of numerous smaller components. Quantitatively,
for n subsystems each with m states, our modular method
achieves a complexity of O(nm2m), a substantial improvement
over the monolithic complexity of O(mn2m

n

), which our
method avoids. Furthermore, Cong et al. [5] did not address
the non-existence of the supremal CO sublanguage, and their
online control algorithm is not directly suitable for computing
maximally permissive sublanguages. The integration with safety
specifications was not considered in their framework.

Within the context of supervisory control theory [6], the
synthesis of supervisors under partial observation necessi-
tates satisfying both controllability and observability. A key
challenge is that, unlike controllability, observability is not
closed under language union, which typically leads to multiple
incomparable maximal observable supervisors rather than a
unique supremal supervisor. To overcome this limitation and
ensure the existence of a unique supremal supervisor, concepts
such as normality [7] and relative observability (RO) [8] were
introduced, both of which are closed under language union. It
is known that normality implies RO, and RO, in turn, implies
observability. While enforcing RO can yield a more permissive
supervisor in monolithic systems compared to normality, it
introduces additional computational demands and constraints
in modular scenarios [9]. Consequently, for the synthesis of
supervisors under partial observation, we focus on exploiting
the properties of normality rather than RO.

Normality [7] is a well-established property that determines

2

whether a given string adheres to a safety specification by con-
sidering observable events. Conceptually, it signifies the ability
to unambiguously distinguish between pairs of strings where
one is legal (safe) and the other is not. Since its introduction,
normality has been widely investigated in the literature [10]–
[15]. Unlike observability, normality guarantees the existence
of a unique supremal normal sublanguage, rendering it a
particularly robust and desirable property in supervisory control
synthesis. For a more comprehensive discussion, we direct the
reader to dedicated works on normality [10], [12], [16], [17].

Our primary contributions are threefold: First, we develop
a novel approach for enforcing CO of a given plant using
supervisory control. We show that, despite the general non-
existence of a supremal CO sublanguage, the problem can be
effectively resolved by incorporating normality. Our approach
enables the unique synthesis of a supervisor that achieves
the least restrictive CO closed-loop system, for which we
propose an algorithm. Second, we extend the enforcement
framework to modular DES. Building upon established results
for modular controllability and normality, we show that a
supervisor enforcing CO can be synthesized in a modular
fashion, thereby offering significant scalability advantages for
large systems. Third, we integrate the modular CO enforcement
framework with external safety specifications. This extension
allows for the concurrent synthesis of supervisors that ensure
both desired safety properties and CO of the system.

The remainder of the paper is organized as follows. Sec-
tion II reviews fundamental concepts from automata theory
and supervisory control. Section III-A details the proposed
algorithm for deriving a CO closed-loop system in a monolithic
setting. The modular computation of supervisors enforcing
CO is presented in Section III-B, building on the supremal
controllable and normal sublanguages of CO subautomata.
Section III-C develops the framework for incorporating external
safety specifications. Section IV concludes the paper.

II. PRELIMINARIES AND DEFINITIONS

We first review the basic concepts of automata theory and
supervisory control [6], [18] essential for subsequent discussion.

The cardinality of a set A is denoted by |A|. An alphabet,
Σ, is a finite nonempty set of events. By Σ∗ we denote the set
of strings over Σ of finite length, including the empty string ε.
The concatenation of strings s1 and s2 is the string s1s2.

A language over Σ is a subset of Σ∗. The concatenation
of languages L1 and L2 is the language L1L2 = {st | s ∈
L1 and t ∈ L2}. The prefix-closure of a language L over Σ
is the set L = {s ∈ Σ∗ | ∃t ∈ Σ∗ such that st ∈ L} of its
prefixes. If L = L, then L is prefix-closed.

A projection R : Σ∗ → Γ∗, for Γ ⊆ Σ, is a morphism for
concatenation defined by R(σ) = ε for σ ∈ Σ\Γ and R(σ) = σ
for σ ∈ Γ. The action of R on a string σ1 · · ·σn ∈ Σ∗ is to re-
move events from Σ\Γ, i.e., R(σ1 · · ·σn) = R(σ1) · · ·R(σn).
The inverse of R is defined by R−1(t) = {s ∈ Σ∗ | R(s) = t}.
The definitions can be extended to languages in a usual way.

A deterministic finite automaton (DFA) is the quintuple
G = (Q,Σ, δ, q0, Qm), where Q is a finite set of states, Σ is
an alphabet, δ : Q×Σ→ Q is a partial transition function that

can be extended to the domain Q×Σ∗ by induction, q0 ∈ Q is
the initial state, and Qm ⊆ Q is the set of marked states. The
language generated by G is L(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Q}
and the language marked by G is Lm(G) = {s ∈ Σ∗ |
δ(q0, s) ∈ Qm}. By definition, Lm(G) ⊆ L(G) and L(G) is
prefix-closed. If Lm(G) = L(G), then G is nonblocking. For a
language K over Σ, we define the set of states reachable in G
under strings of K by δ(q0,K) = {δ(q0, t) | t ∈ K ∩ L(G)}.

A subautomaton of G is a DFA obtained from G by removing
some transitions and states (together with their transitions).

The observer of G with respect to a projection P is denoted
by Obs(G) and defined as the accessible part of the DFA
obtained by the standard subset construction applied to a
nondeterministic automaton computed from G by replacing
every event a by P (a); see [18] for more details.

An automaton G is a state-partition automaton (SPA) with
respect to P if every two states of its observer Obs(G) are
either identical or their intersection is empty.

A. Supervisory Control
A system G over Σ is partially observed and partially

controlled if the alphabet Σ is partitioned into observable
events Σo and unobservable events Σuo = Σ \ Σo, and into
controllable events Σc and uncontrollable events Σuc = Σ\Σc.

Let Γ = {γ ⊆ Σ | Σuc ⊆ γ} be the set of control patterns,
and let P be the projection from Σ∗ to Σ∗

o. The supervisor
of G with respect to Γ is a map S : P (L(G)) → Γ that
defines the behavior of the closed-loop system S/G as follows:
ε ∈ L(S/G); if s ∈ L(S/G), sσ ∈ L(G), and σ ∈ S(P (s)),
then sσ ∈ L(S/G). Intuitively, based on the observation P (s),
the supervisor disables events from Σc \ S(P (s)). Given a
specification K, the language marked by the closed loop is
Lm(S/G) = L(S/G) ∩K. The supervisor is nonblocking if
the closed loop is nonblocking, i.e., Lm(S/G) = L(S/G).
In particular, we consider only supervisors S that can be
represented by an automaton, GS . Then S/G = GS ∥ G,
and we can consider S/G to be an automaton.

A language K ⊆ L(G) is controllable with respect to L(G)
and the set of uncontrollable events Σuc if KΣuc∩L(G) ⊆ K.
A language K ⊆ L(G) is normal with respect to L(G) and a
projection P if K = P−1[P (K)] ∩ L(G).

Given a plant G over Σ and a language K ⊆ Σ∗, we use the
notation supCN(K,L(G),Σuc, P) to denote the supremal sub-
language of K∩L(G) that is controllable with respect to L(G)
and Σuc, and normal with respect to L(G) and P . Analogously,
we denote the supremal normal sublanguage of K∩L(G) with
respect to L(G) and P by supN(K,L(G), P). Sometimes, we
simplify the notation and write the automaton, H , instead of
its language L(H); for instance, if K = L(H), we write
supCN(H,G,Σuc, P) instead of supCN(K,L(G),Σuc, P).
When Σuc and P are clear from the context, we drop them
from the notation.

B. Modular Supervisory Control
The parallel composition of languages Li over Σi, for

i = 1, . . . , n, n ≥ 2, is the language ∥ni=1Li =
⋂n

i=1 P
−1
i (Li),

where each projection Pi : (
⋃n

i=1 Σi)
∗ → Σ∗

i erases all events

3

Σ∗

Σ∗
o

Σ∗
i

Σ∗
i,oP P

o
i,o

P i
i,oPi

Fig. 1: Projection notations in this note.

that are not in Σi. For the definition of parallel composition
for automata, we refer to the literature [18]. In particular,
if G1, . . . , Gn are automata, then L(∥ni=1Gi) = ∥ni=1L(Gi)
and Lm(∥ni=1Gi) = ∥ni=1Lm(Gi). The languages Li are
nonconflicting if ∥ni=1Li = ∥ni=1Li.

A modular system {Gi}ni=1 consists of n ≥ 2 automata, also
known as modules, Gi over Σi for i = 1, . . . , n. The behavior
of the modular system is the behavior of the monolithic system
G defined as a parallel composition of the individual modules,
that is, G = ∥ni=1Gi. Shared events of the modules form the set
Σs =

⋃
i ̸=j(Σi∩Σj). For every event a shared by two modules

Gi and Gj , we assume that if a is controllable/observable in
Gi then it is also controllable/observable in Gj .

The modular control problem involves a modular system
{Gi}ni=1 with the global (monolithic) behavior L = ∥ni=1L(Gi),
and a specification K given either as the parallel composition
K = ∥ni=1Ki of local specifications Ki ⊆ L(Gi), or as a
global specification K ⊆ ∥ni=1L(Gi). The objective is to
synthesize local supervisors Si such that ∥ni=1Lm(Si/Gi) =
Lm(S/∥ni=1Gi), where S is a nonblocking and maximally
permissive monolithic supervisor for specification K and global
language L.

We denote by Σi,o = Σi ∩ Σo the set of local observable
events. A similar notation applies to the intersection of other
alphabets. The projections we use are summarized in Fig. 1.

III. ENFORCEMENT OF CRITICAL OBSERVABILITY

In this section, we present our methodology for enforcing
CO of a given plant using supervisory control. We begin by
recalling the definition of CO [3].

Definition 1 (Critical Observability): A DFA G = (Q,
Σ, δ, q0, Qm) is critically observable (CO) with respect to
a projection P and a set of critical states Qc ⊆ Q if, for
every string s ∈ L(G), either δ(q0, P

−1[P (s)]) ⊆ Qc or
δ(q0, P

−1[P (s)]) ⊆ Q \Qc.
The concept of CO requires that, given an observation of the

system, one can unambiguously determine whether the system
is currently in a critical state. This property is symmetric with
respect to critical and noncritical states; interchanging Qc and
Q \ Qc in the definition does not alter whether a DFA is
critically observable.

A. Monolithic Computation
To enforce CO for a monolithic plant, we synthesize a

supervisor that restricts the plant’s behavior. This necessitates
a formal definition of a CO sublanguage.

Definition 2 (Critically Observable Sublanguage): Let
G = (Q,Σ, δ, q0, Qm) be a DFA, and let Qc ⊆ Q be a set of
critical states. A language K ⊆ L(G) is critically observable
(CO) with respect to G, P , and Qc if, for every s, s′ ∈ K with
P (s) = P (s′), δ(q0, s) ∈ Qc if and only if δ(q0, s′) ∈ Qc.

Any sublanguage of a critically observable plant is critically
observable, as formalized by the following lemma.

Lemma 1: Let G = (Q,Σ, δ, q0, Qm) be a DFA that is
CO with respect to a projection P and a set of critical states
Qc ⊆ Q. Then every language K ⊆ L(G) is CO with respect
to G, P , and Qc.

Proof: For every s, s′ ∈ K ⊆ L(G) with P (s) = P (s′),
the definition of CO for G directly implies that δ(q0, s) ∈ Qc

if and only if δ(q0, s′) ∈ Qc.
To enforce CO of a given DFA G, our aim is to synthesize

a supervisor ensuring that the supervised automaton achieves
this property. However, we can achieve only behaviors that are
controllable and observable. Since observability is not closed
under language union, we use normality instead. Therefore, our
aim is to synthesize a supervisor that achieves the supremal
controllable, normal, and critically observable sublanguage of
L(G) with respect to G, Σuc, P , and Qc, which we denote by

supCNCO(G,Σuc, P,Qc)

or simply supCNCO(G) if the components are clear from the
context. We now show that supCNCO(G) exists.

Theorem 1: Let G be a DFA, and let Mi ⊆ L(G), for
i ∈ I , be controllable, normal, and CO with respect to G, P ,
Σuc, and Qc. Then

⋃
i∈I Mi is controllable, normal, and CO

with respect to G, P , Σuc, and Qc.
Proof: The union

⋃
i∈I Mi is controllable and normal with

respect to G, Σuc, and P , since controllability and normality
are closed under union. It remains to show that

⋃
i∈I Mi is CO

with respect to G, P , and Qc. For the sake of contradiction,
assume that there are mi ∈ Mi and mj ∈ Mj such that
P (mi) = P (mj), δG(q0,mi) = p, δG(q0,mj) = q, and p is
critical if and only if q is not. By normality of Mi, we have
mj ∈ P−1[P (mi)] ∩ L(G) ⊆ Mi. Consequently, Mi is not
CO with respect to G, P , and Qc, which is a contradiction.

Given a DFA G, the fundamental question is how to compute
supCNCO(G). Since L(G) is controllable and normal with
respect to itself, we basically need to find a “suitable” CO
sublanguage of L(G).

Ideally, one would compute the supremal CO sublanguage.
Unfortunatelly, this language does not exist—consider the SPA
G with transitions (1, a, 2), (1, τ, 3), and (3, a, 4), where a is
observable, τ is unobservable, and the initial state is 1. Then
G is not CO with respect to Qc = {2}. However, removing
state 2 or state 4 yields two different subautomata, G2 and G4,
both of which are CO with respect to Qc.

Therefore, we identify a subautomaton G′ of G̃ = G ∥
Obs(G) as described in Algorithm 1, whose language is CO
with respect to G̃. Then, we synthesize a supervisor that can
achieve L(G′) by restricting the plant G. Since it may not
always be possible to achieve L(G′) entirely, we compute the
supremal sublanguage of L(G′) that can be enforced by a
supervisor, specifically we compute supCN(G′, G).

The automaton G̃ = G ∥ Obs(G) is a state-partition
automaton (SPA) [19] that plays a key role in our approach.
Therefore, we focus on SPAs for a while. In Algorithm 2, we
show that this is only a technical detail and not a restriction.

Algorithm 1 formally describes the construction of a “suit-
able” CO subautomaton of a given SPA G. It is based on a

4

modified parallel composition of two copies of G, denoted by
G 9 G. This composition models the indistinguishability of
unobservable events. Specifically, let G = (Q,Σ, δ, q0, F) be
a DFA and Σo ⊆ Σ be the set of observable events. We define
G9G as the accessible part of the nondeterministic automaton
(Q×Q,Σ, f, (q0, q0), F × F), where

f((x, y), e) =

{
{(δ(x, e), δ(y, e))} if e ∈ Σo

{(δ(x, e), y), (x, δ(y, e))} if e /∈ Σo .

The following result from [4] relates CO to reachability in
the automaton G 9 G.

Lemma 2: Let G = (Q,Σ, δ, q0, F) be a DFA, Σo ⊆ Σ be
the set of observable events, and Qc ⊆ Q be a set of critical
states. Then G is not critically observable with respect to Σo

and Qc if and only if there is a reachable state in G 9 G that
belongs to the set Qc × (Q \Qc).

We can now formulate the algorithm for computing a
“suitable” subautomaton of a given SPA.

Algorithm 1 Construction of a CO Subautomaton

Input: An SPA G, critical states Qc, and a projection P .
Output: A subautomaton of G whose language is CO wrt G.

1: Set G′ ←− G
2: Compute the accessible part of H ←− G′ 9 G′

3: for every reachable state (p, q) ∈ Qc × (Q \Qc) of H do
4: Remove both state p and state q from G′ together with

the corresponding transitions
5: return the accessible part of G′

Let G′ be the result of Algorithm 1 applied to an SPA G.
We define a technical auxiliary language N(G) as the supremal
normal sublanguage of L(G′) with respect to G and P , i.e.,

N(G) = supN(G′, G)

that will be useful later. However, to enforce CO via supervisory
control, we need not only normality, but also controllability.
Therefore, we further define

Opt(G) = supCN
(
N(G), G

)
,

which is our desired language, as we show below.
Lemma 3: Opt(G) = supCN(G′, G).

Proof: As N(G) ⊆ L(G′), we have supCN(N(G), G) ⊆
supCN(G′, G). On the other hand, supCN(G′, G) ⊆ N(G),
which implies supCN(G′, G) = supCN(supCN(G′, G), G) ⊆
supCN(N(G), G).

We are now ready to formulate Algorithm 2 that computes
supCNCO(G) for a DFA G. To prove correctness of Algo-
rithm 2, we provide several auxiliary results.

The first result is a simple observation that we implicitly
use in the following, see, e.g., [18], [19].

Lemma 4: Let G be a DFA, then G̃ = G ∥ Obs(G) is an
SPA, and L(G) = L(G̃).

The second result states that a language is CO with respect
to G if and only if it is CO with respect to G̃.

Lemma 5: Let G be a DFA with the set of states Q, and
let G̃ = G ∥ Obs(G). Then, for every K ⊆ L(G), K is CO

Algorithm 2 Computation of supCNCO(G)

Input: A DFA G = (Q,Σ, δ, q0, F), critical states Qc ⊆ Q,
and a projection P .

Output: supCNCO(G,Σuc, P,Qc).
1: Set G̃← G ∥ Obs(G)
2: Set the critical states of G̃ to be Qc × 2Q

3: Compute N(G̃) = supN(G̃′, G̃), where G̃′ is obtained
from G̃ by Algorithm 1

4: Compute Opt(G̃) = supCN(N(G̃), G̃)
5: return Opt(G̃)

with respect to G, P , and Qc if and only if K is CO with
respect to G̃, P , and Qc × 2Q.

Proof: Let x0 ∈ Q × 2Q denote the initial state of G̃.
For every s ∈ L(G) = L(G̃), we have δG(q0, s) ∈ Qc if and
only if δG̃(x0, s) ∈ Qc × 2Q, which proves the claim.

The following result is a simple observation.
Lemma 6: Consider the automata and languages of Algo-

rithm 2, then supCN(N(G̃), G̃) = supCN(N(G̃), G).
Proof: By Lemma 4, L(G̃) = L(G), and therefore

supCN(N(G̃), L(G̃)) = supCN(N(G̃), L(G)).
The next result is key to the correctness of Algorithm 2.
Lemma 7: Consider the automata and languages used in

Algorithm 2. Then, supN(L′, G) ⊆ N(G̃) for every language
L′ ⊆ L(G) that is CO with respect to G, P , and Qc.

Proof: For the sake of contradiction, we assume that there
is a string w ∈ supN(L′, G) such that w /∈ N(G̃). Without
loss of generality, we assume that w is the shortest in the sense
that every strict prefix of w belongs to both languages. Since
w ∈ L′ and L′ is CO with respect to G, we have

δG(q0, P
−1[P (w)]) ⊆ Qc or

δG(q0, P
−1[P (w)]) ⊆ Q \Qc . (1)

Let x0 ∈ Q× 2Q be the initial state of G̃. Since w /∈ N(G̃),
but every strict prefix of w does, the state δG̃(x0, w) = (q,X)
was removed from G̃ by Step 3 of Algorithm 2. Thus, there are
w′, w′′ ∈ L(G) such that δG̃(x0, w

′) = (q,X), δG̃(x0, w
′′) =

(p, Y), and (q,X) is critical if and only if (p, Y) is not. Since
G̃ is an SPA, δG̃(x0, P

−1[P (w)]) = δG̃(x0, P
−1[P (w′)]).

However, {(q,X), (p, Y)} ⊆ δG̃(x0, P
−1[P (w′)]), and by

Lemma 5, {p, q} ⊆ δG(q0, P
−1[P (w)]), which contradicts

(1).
We are now ready to prove the correctness of Algorithm 2.
Theorem 2: Algorithm 2 returns supCNCO(G).

Proof: Let G be a DFA, and M = supCNCO(G), then

Opt(G̃) = supCN(N(G̃), G̃)

= supCN(N(G̃), G) (Lemma 6)
⊆M = supCN(M, G)

⊆ supCN(N(G̃), G) (Lemma 7)

= supCN(N(G̃), G̃) (Lemma 6)

= Opt(G̃).

We now illustrate the enforcement procedure.

5

1 3 5

2 4

a d

b
c

d

{1, 2, 3} {4, 5}

{2} {4}

d

c

d

Fig. 2: A DFA G with Σuo = {a, b}, Σuc = {c}, and Qc = {4}, and
Obs(G).

(1, {1, 2, 3}) (3, {1, 2, 3}) (5, {4, 5})

(2, {1, 2, 3}) (4, {4, 5})

(2, {2}) (4, {4})

A B C

D E

F G

a d

b

d

c

d

Fig. 3: SPA G̃ = G ∥ Obs(G) with critical states (4, {4, 5}) and (4, {4}).

Example 1: We consider the DFA G depicted in Fig. 2,
together with its observer. Algorithm 2 constructs G̃ = G ∥
Obs(G) shown in Fig. 3. The subautomaton G′ of G̃ is achieved
by removing all states from Q̃c × (Q̃ \ Q̃c) reachable in G̃ 9
G̃, see Fig. 4. The resulting language Opt(G̃) = N(G̃) =
supN(G′, G̃) is depicted in Fig. 4. ⋄

B. Modular Computation
We now extend our framework to the supervisor enforcement

of CO for modular systems {Gi}ni=1, where each module
Gi = (Qi,Σi, δi, q0,i, Qm,i) is a DFA with the local set of
critical states Qc,i ⊆ Qi.

The question is how to define the critical states Qc of the
monolithic system G = ∥ni=1Gi based on the critical states of
the local modules Gi. There are many options, and therefore
we formulate the definition of Qc in general as follows:

Qc = {(q1, . . . , qn) ∈
n∏

i=1

Qi | φ(q1, . . . , qn)} , (2)

where φ is a formula over the variables q1, . . . , qn and the
local critical sets Qc,1, . . . , Qc,n. For example,

φ(q1, . . . , qn) ≡ ∃i ∈ {1, . . . , n}.(qi ∈ Qc,i)

results in the definition of Pola et al. [3], while

φ(q1, . . . , qn) ≡ ∀i ∈ {1, . . . , n}.(qi ∈ Qc,i)

is the standard Cartesian product of Qc,i for i = 1, . . . , n.
For the following result, we require that the parallel compo-

sition is closed under CO, that is, if Gi is CO with respect to
Qc,i, for i = 1, . . . , n, then ∥ni=1Gi is CO with respect to Qc.
Note that, besides others, both the definition of Pola et al. [3]
and the standard Cartesian product satisfy this property.

We now have the following result.
Theorem 3: Let {Gi}ni=1 be a modular plant, and let

G = ∥ni=1Gi be its monolithic counterpart. Let Qc be a set
of critical states of G as defined in (2), such that if Gi is
CO with respect to Qc,i, for i = 1, . . . , n, then G is CO with

respect to Qc. Then, ∥ni=1 supCNCO(Gi,Σi,uc, P
i
i,o, Qc,i) is

controllable, normal, and CO with respect to G, Σuc, P , Qc.
Proof: Since the languages supCNCO(Gi) are prefix

closed, they are nonconflicting. Therefore, by [20, Proposi-
tion 4.6], [14, Theorem 16], and the assumption that Qc

preservers CO of the parallel composition, we obtain that
∥ni=1 supCNCO(Gi,Σi,uc, P

i
i,o, Qc,i) is controllable, normal,

and CO with respect to G, Σuc =
⋃n

i=1 Σi,uc, P from
Σ =

⋃n
i=1 Σi to Σo =

⋃n
i=1 Σi,o, and Qc.

C. Safety Specifications
The enforced CO plant can be used to handle additional

safety specifications in a classical supervisory control manner.
Specifically, either the initial plant G is CO, or we have already
synthesized a supervisor

S = supCNCO(G)

such that the enforced plant S/G is CO. Given an arbitrary
safety specification K, we proceed by computing the supremal
controllable and normal sublanguage of K with respect to the
CO plant S/G, i.e., we compute

supCN(K,S/G) .

All existing results from the supervisory control theory
apply to this problem, since we are computing the supremal
controllable and normal sublanguage of K with respect to
the plant S/G, see, e.g., [6], [18]. In particular, the modular
approach of Komenda and Masopust [14] can be directly
applied to handle both local and global safety specifications;
see the reference for further details.

The following theorem is a direct consequence of Theorem 3
and the integration with safety.

Theorem 4: Let {Gi}ni=1 be a modular plant with Gi

over Σi, and let G = ∥ni=1Gi be the monolithic counterpart
over Σ =

⋃n
i=1 Σi. For K = ∥ni=1Ki with Ki ⊆ L(Gi),

Si = supCNCO(Gi,Σi,uc, P
i
i,o, Qc,i), and S = ∥ni=1Si, if the

languages supCN(Ki, Si/Gi) are nonconflicting, Pi(S/G) =
Si/Gi, and Σs ⊆ Σo ∩ Σc, then supCN(K,S/G) =
∥ni=1 supCN(Ki, Si/Gi).

Example 2: Consider the SPA G1 and the specification K1

depicted in Fig. 5. Then, S1 = Opt(G1) is depicted in Fig. 6,
and we have supCN(K1, S1/G1) = Opt(G1). Let G2 be the
DFA depicted in Fig. 7. Then, S2 = Opt(G2) = G2, and
supCN(K2, S2/G2) = K2 is depicted in Fig. 7. Observable
events are Σo = {a, b}, and shared events of G1 and G2 are
Σs = {a, b}, which are also controllable. It can be verified
that Pi(S/G) = Si/Gi, and supCN(Ki, Si/Gi) are prefix-
closed, and hence nonconflicting. Therefore, Theorem 4 is
applicable, and hence supCN(K1∥K2, (S1∥S2)/(G1∥G2)) =
supCN(K1, S1/G1) ∥ supCN(K2, S2/G2) = {ε, a, aτ, b, bτ}
∥ {ε, a} = {ε, a, aτ}. ⋄

IV. CONCLUSION

We presented a novel approach to enforcing CO within the
supervisory control framework for discrete-event systems. We
first addressed a fundamental challenge by showing that while
a supremal CO sublanguage does not exist in general, this

6

(A,A)

(B,A)(B,D) (B,B)(C,E) (C,C)

(D,A) (D,B) (E,C)

(A,D)

(D,D)(E,E)

(A,B)(F, F)(G,G)

ac

b

b

a

b

bd

d

b

a d

a

a db

a

d

(1, {1, 2, 3}) (3, {1, 2, 3})

(2, {1, 2, 3})

(2, {2}) (4, {4})

A B

D

F G

a

b

c

d

Fig. 4: The structure G̃ 9 G̃ and Opt(G̃) = N(G̃) = supN(G′, G̃).

1

23

4 5

6

7

8

9

a

τ

a a

b

b

τ

b

(1,1)

(2,2)

(2,3)(5, 4)

(3,2)(4, 5)

(3,3)(4,4)

(5,5)

(6,6)

(6,8)

(8,6)

(7,7)

(7, 9)

(9, 7)

(8,8) (9,9)

aτ

τ

τ

a

τ

a

a

a

b

b

τ

τ

τ

a

τ

a

b

Fig. 5: SPA G1 with Σo,1 = Σc,1 = {a, b}, Σuo,1 = Σuc,1 = {τ}, and Qc = {1, 5, 6, 8, 9}, where K1 = L(G1), and G1 9 G1.

1

23 6 8

a

τ

b

τ

Fig. 6: Opt(G1) = N(G1) = supCN(G′
1, G1).

14 2 3
a b b

14
a

Fig. 7: DFA G2 with Σ2 = Σo,2 = Σc,2 = {a, b} and Qc,2 = {1}, where
K2 = {ε, a}; supCN(K2, S2/G2).

limitation can be effectively overcome by incorporating the
concept of normality. Building on this insight, we proposed an
algorithm to compute the least restrictive closed-loop system
that inherently guarantees CO.

To tackle scalability, we developed a comprehensive modular
enforcement framework. By leveraging existing results on
controllability and normality, our framework enables the
synthesis of local supervisors that collectively ensure CO in a
decentralized manner.

Furthermore, we extended this modular framework to seam-
lessly integrate safety specifications. This extension allows for
the synthesis of supervisors that not only enforce CO but also
guarantee desired safety properties, thereby providing a robust
and practical solution for real-world applications.

ACKNOWLEDGEMENT

We gratefully acknowledge the suggestions and comments
of anonymous referees.

REFERENCES

[1] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” Mathematics of Control, Signals and Systems,
vol. 1, no. 1, pp. 13–30, 1988.

[2] M. H. De Queiroz and J. E. Cury, “Modular supervisory control of large
scale discrete event systems,” in Discrete Event Systems: Analysis and
Control. Springer, 2000, pp. 103–110.

[3] G. Pola, E. De Santis, M. D. Di Benedetto, and D. Pezzuti, “Design of
decentralized critical observers for networks of finite state machines: A
formal method approach,” Automatica, vol. 86, pp. 174–182, 2017.

[4] T. Masopust, “Critical observability for automata and Petri nets,” IEEE
Transactions on Automatic Control, vol. 65, no. 1, pp. 341–346, 2020.

[5] X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li, “Critical observability
verification and enforcement of labeled Petri nets by using basis markings,”
IEEE Transactions on Automatic Control, vol. 68, no. 12, pp. 8158–8164,
2023.

[6] W. M. Wonham and K. Cai, Supervisory control of discrete-event systems.
Springer, 2019.

[7] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Information sciences, vol. 44, no. 3, pp. 173–198, 1988.

[8] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Transactions on
Automatic Control, vol. 60, no. 3, pp. 659–670, 2015.

[9] J. Komenda and T. Masopust, “Conditions for hierarchical supervisory
control under partial observation,” IFAC-PapersOnLine, vol. 53, no. 4,
pp. 303–308, 2020.

[10] H. Cho and S. I. Marcus, “On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with partial
observation,” Mathematics of Control, Signals and Systems, vol. 2, no. 1,
pp. 47–69, 1989.

[11] R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wonham,
“Formulas for calculating supremal controllable and normal sublanguages,”
Systems & Control Letters, vol. 15, no. 2, pp. 111–117, 1990.

[12] S. Takai and T. Ushio, “Effective computation of an Lm(G)-closed,
controllable, and observable sublanguage arising in supervisory control,”
Systems & Control Letters, vol. 49, no. 3, pp. 191–200, 2003.

[13] J. Komenda and T. Masopust, “Hierarchical supervisory control under
partial observation: Normality,” IEEE Transactions on Automatic Control,
vol. 68, no. 12, pp. 7286–7298, 2023.

[14] ——, “Supervisory control of modular discrete-event systems under
partial observation: Normality,” IEEE Transactions on Automatic Control,
vol. 69, no. 6, pp. 3796–3807, 2024.

[15] S. Miao, J. Komenda, and F. Lin, “Hierarchical supervisory control of
networked and cyber-attacked discrete-event systems,” Automatica, vol.
183, p. 112578, 2026.

[16] J. G. Thistle and H. Lamouchi, “Effective control synthesis for par-
tially observed discrete-event systems,” SIAM Journal on Control and
Optimization, vol. 48, no. 3, pp. 1858–1887, 2009.

[17] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,” IEEE
Transactions on Automatic Control, vol. 61, no. 8, pp. 2140–2154, 2016.

[18] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer, 2021.

[19] G. Jirásková and T. Masopust, “On properties and state complexity of
deterministic state-partition automata,” in IFIP International Conference
on Theoretical Computer Science, 2012, pp. 164–178.

[20] L. Feng, “Computationally efficient supervisor design for discrete-event
systems,” Ph.D. dissertation, University of Toronto, 2007.

	Introduction
	Preliminaries and Definitions
	Supervisory Control
	Modular Supervisory Control

	Enforcement of Critical Observability
	Monolithic Computation
	Modular Computation
	Safety Specifications

	Conclusion
	References

